Abstract

Multifunctional electronic skins (e-skins), which mimic the somatosensory system of human skin, have been widely employed in wearable devices for intelligent robotics, prosthetics, and human health monitoring. Relatively low sensitivity and severe mutual interferences of multiple stimuli detection have limited the applications of the existing e-skins. To address these challenges, inspired by the physical texture of the natural fingerprint, a novel fully elastomeric e-skin is developed herein for highly sensitive pressure and temperature sensing. A region-partition strategy is utilized to construct the multifunctional fingerprint-shaped sensing elements, where strain isolation structure of indurated film patterns are further embedded to enhance the sensitivity and effectively reduce mutual interferences between the differentiated units. The fully elastomeric graphene/silver/silicone rubber nanocomposites are synthesized with tunable properties including conductivity and sensitivity to satisfy the requirements of highly sensitive pressure and temperature sensing as well as stretchable electrodes. Remarkable progress in sensitivities for both pressure and temperature, up to 5.53 kPa-1 in a wide range of 0.5-120 kPa and 0.42% °C-1 in 25-60 °C, respectively, are achieved with the inappreciable mutual interferences. Further studies demonstrate the great potential of the proposed e-skin in the next-generation of wearable electronics for human-machine interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.