Abstract

We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our algorithm is randomized and it takes expected amortized $O(\log n)$ time for each edge update, where $n$ is the number of vertices in the graph. While there exists a trivial $O(n)$ time algorithm for each edge update, the previous best known result for this problem is due to Ivkovicź and Lloyd [Lecture Notes in Comput. Sci. 790, Springer-Verlag, London, 1994, pp. 99--111]. For a graph with $n$ vertices and $m$ edges, they gave an $O( {(n+ m)}^{0.7072})$ update time algorithm which is sublinear only for a sparse graph. For the related problem of maximum matching, Onak and Rubinfeld [Proceedings of STOC'10, Cambridge, MA, 2010, pp. 457--464] designed a randomized algorithm that achieves expected amortized $O(\log^2 n)$ time for each update for maintaining a $c$-approximate maximum matching for some unspecified large constant $c$. In contrast, we can maintain a factor 2 approximate maximum matching in expected amortized $O(\log n )$ time per update as a direct corollary of the maximal matching scheme. This in turn also implies a 2-approximate vertex cover maintenance scheme that takes expected amortized $O(\log n )$ time per update.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.