Abstract

Over the years, Hedin's GW self-energy has been proven to be a rather accurate and simple approximation to evaluate electronic quasiparticle energies in solids and in molecules. Attempts to improve over the simple GW approximation, the so-called vertex corrections, have been constantly proposed in the literature. Here, we derive, analyze, and benchmark the complete second-order term in the screened Coulomb interaction W for finite systems. This self-energy named G3W2 contains all the possible time orderings that combine 3 Green's functions G and 2 dynamic W. We present the analytic formula and its imaginary frequency counterpart, with the latter allowing us to treat larger molecules. The accuracy of the G3W2 self-energy is evaluated on well-established benchmarks (GW100, Acceptor 24, and Core 65) for valence and core quasiparticle energies. Its link with the simpler static approximation, named SOSEX for static screened second-order exchange, is analyzed, which leads us to propose a more consistent approximation named 2SOSEX. In the end, we find that neither the G3W2 self-energy nor any of the investigated approximations to it improve over one-shot G0W0 with a good starting point. Only quasi-particle self-consistent GW HOMO energies are slightly improved by addition of the G3W2 self-energy correction. We show that this is due to the self-consistent update of the screened Coulomb interaction, leading to an overall sign change of the vertex correction to the frontier quasiparticle energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call