Abstract

Distributed energy resources have become a key element towards a smarter grid. However, several significant challenges for real-time implementation have emerged, in particular control design and its integration with distribution systems. In this work, a fully distributed dynamic transactive control to coordinate distributed energy resources in a distribution system considering physical network constraints based on saddle-point dynamics with a predictive-sensitivity conditioning term is proposed. An alternative interconnection of dynamical systems in different timescale preserving stability and optimality is introduced. A stability result for saddle-point dynamics with predictive-sensitivity conditioning is presented. Finally, simulation results for a distribution network with distributed energy resources adopted from an IEEE 37-bus test feeder are implemented to validate numerically the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.