Abstract

This paper studies the robust formation flying problem for a swarm of drones, which are modeled as uncertain second order systems. By making use of minimal virtual leader information, a fully distributed robust control scheme is proposed, which includes three parts. First, the output based adaptive distributed observer is adopted to recover the global flying path vector as well as the coefficients of the minimal polynomial of the system matrix of the virtual leader system for each drone based on neighboring information from the communication network. Second, based on the estimated minimal polynomial of the system matrix of the virtual leader system, an asymptotic internal model is conceived to deal with uncertain system parameters. Third, by combining the asymptotic internal model and a certainty equivalent dynamic state feedback control law, a local trajectory tracking controller is synthesized to solve the robust formation flying problem. Numerical simulations are provided to validate the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call