Abstract

This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order integrators with their control inputs constrained within a pre-specified region. A linear transformation for players' dynamics is firstly utilized to facilitate the design of bounded control inputs incorporating multiple saturation functions. By introducing consensus protocols with adaptive and time-varying gains, the unknown actions for players are distributively estimated. Then, a fully distributed Nash equilibrium seeking strategy is exploited, showcasing its remarkable properties: 1) ensuring the boundedness of control inputs; 2) avoiding any global information/parameters; and 3) allowing the graph to be directed. Based on Lyapunov stability analysis, it is theoretically proved that the proposed distributed control strategy can lead all the players' actions to the Nash equilibrium. Finally, an illustrative example is given to validate effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.