Abstract

In this work, a new fully discrete stabilized finite element method is studied for the two-dimensional transient Stokes equations. This method is to use the difference between a consistent mass matrix and underintegrated mass matrix as the complement for the pressure. The spatial discretization is based on the P1–P1 triangular element for the approximation of the velocity and pressure, the time discretization is based on the Euler semi-implicit scheme. Some error estimates for the numerical solutions of fully discrete stabilized finite element method are derived. Finally, we provide some numerical experiments, compared with other methods, we can see that this novel stabilized method has better stability and accuracy results for the unsteady Stokes problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.