Abstract
Abstract In this paper we study the numerical approximation of the stochastic Cahn–Hilliard–Navier–Stokes system on a bounded polygonal domain of $\mathbb{R}^{d}$, $d=2,3$. We propose and analyze an algorithm based on the finite element method and a semiimplicit Euler scheme in time for a fully discretization. We prove that the proposed numerical scheme satisfies the discrete mass conservative law, has finite energies and constructs a weak martingale solution of the stochastic Cahn–Hilliard–Navier–Stokes system when the discretization step (both in time and in space) tends to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.