Abstract

In this paper the realization of nth order (n ≥ 3) fully-differential current-mode filters using Current Differencing Current Conveyors (CDCC) has been presented which results in circuits employing all grounded passive elements. In contrast to earlier known realizations of fully-differential filters which invariably require more than one capacitors per pole, the proposed realization employs only one capacitor per pole. The cut-off frequency of the realized filter can be electronically tuned when all the grounded resistors associated with the integrators are implemented by identical CMOS grounded voltage-controlled-resistors (VCR) driven by a common control voltage. The methodology has been illustrated by realizing a fifth order Butterworth filter as a specific example whose workability has been verified using SPICE simulations in 0.18 µm TSMC technology. A reduced-component-version of the designed fifth order Butterworth filter has also been presented which also employs all grounded RC components but does not have electronic-tunability. Some representative simulation results have been included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.