Abstract

Hydromagnetic second order velocity slip flow of viscous material with nonlinear mixed convection towards a stretched rotating disk is numerically examined here. Important slip mechanism of Buongiorno’s nanofluid model i.e., Brownian motion and thermophoretic diffusion is incorporated in the mathematical modeling. Heat transport aspects are examined via Joule heating, thermal radiation and dissipation. Convective conditions at the stretchable surface of disk is implemented for the heat transport analysis. Chemical reaction subject to activation energy is also considered. Through appropriate transformations and shooting method the outcomes are computed and demonstrated graphically. The flow field, temperature, surface drag force, concentration and Nusselt number are deliberated subject to pertinent parameters. Total entropy rate is obtained. The outcomes show that magnetic field significantly affects the flow field as well as entropy rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call