Abstract

Traditionally, the optimal power flow (OPF) problem is solved in a centralized manner. However, with continuous expansion of the scale of multi-area interconnected power systems, realistic applications of the centralized method face additional challenges. In this paper, we propose a fully decentralized OPF algorithm for multi-area interconnected power systems based on the distributed interior point method, where solving the regional correction equation was converted into solving a parametric quadratic programming problem during each Newton-Raphson iteration. This is a novel approach to tackle the decentralized OPF problems. We analyzed the convergence property of this algorithm. The proposed approach is fully decentralized without central coordinator and parameter tuning, and is robust to network partitioning. Furthermore, this decentralized algorithm enjoys the same convergence performance and accuracy as the centralized interior point method. Results on a 3-bus test system, 4 IEEE test systems, and a real 4-area 6056-bus interconnected system show the benefits of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call