Abstract

The Tunnel Sealing Experiment (TSX) was a two-phase international project funded by Canada, Japan, France, and the United States. The first phase was pressurizing the TSX chamber to 4 MPa to investigate the ability of clay and concrete bulkheads to reduce hydraulic flows. The second phase involved circulating heated water through the chamber to evaluate the influence of elevated temperature on the performance of the bulkheads and adjacent rock. A numerical analysis to simulate thermohydraulic evolution of the bulkheads and surrounding rock of the TSX was conducted to help in understanding the physical test process and the interaction between heat and pore pressure evolutions. The simulated rock temperature matched the measured data quite well; however the simulated bulkhead temperatures were greater than the measured temperatures. The difference may have been caused by entrapped air or formation of microchannels in the chamber sand, which would decrease the amount of heat reaching the bulkheads. The simulated thermally induced pore pressure increase in the clay bulkhead reasonably matched the measured data for the saturated portion. The difference in magnitude between simulated and measured rock pore pressures indicates that thermo hy draulic simulation should be coupled with a mechanical component when the stiffness of the media is large and hydraulic conductivity is low.Key words: numerical modelling, Tunnel Sealing Experiment, nuclear waste management, hydraulic head, thermal conduction, thermal convection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.