Abstract

Abstract In this study, a combination of the smoothed particle hydrodynamics (SPH) and finite element method (FEM) solving the complex problem of interaction between fluid with free surface and an elastic structure is studied. A brief description of SPH and FEM is presented. Contact mechanics is used for the coupling between fluid and structure, which are simulated with SPH and FEM, respectively. In the proposed method, to couple mesh-free and mesh-based methods, fluid and structure are solved together by a complete stiffness matrix instead of iterative predictive–corrective or master–slave methods. In addition, fully dynamic large-deformation analysis is carried out in FEM by taking into account mass and damping of the elastic structure. Accordingly, a two-dimensional fluid–structure interaction (FSI) code is developed and validated with two different experiments available in the literature. The results of the numerical method are in good agreement with the experiments. In addition, a novel laboratory experiment on a dam break problem with elastic gate in which the length of the initial water column is larger than its height is conducted. The main difference between the previous experiments and the one conducted in this study is that an upward water motion parallel to the elastic gate is observed at the upstream side of the gate. This motion is captured with the numerical method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.