Abstract

Oxygen redistribution with a high-temperature gradient is an important fuel performance concern in fast-breeder reactor (FBR) and light-water reactor (LWR) (U,Pu)O2 fuel under irradiation, and affects fuels properties, power distribution, and fuel overall performance. This paper studies the burnup dependent oxygen and heat diffusion behavior in a fully coupled way within (U,Pu)O2 FBR and LWR fuels. The temperature change shows relatively larger impact on oxygen to metal (O/M) ratio redistribution rather than O/M ratio change on temperature, whereas O/M ratio redistributions show different trends for FBR and LWR fuels due to their different deviations from the stoichiometry of oxygen under high-temperature environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call