Abstract
Summary A hybrid discrete-continuum numerical scheme is developed to study the behavior of a hydraulic fracture crossing natural fractures. The fully coupled hybrid scheme utilizes a discrete element model for an inner domain, within which the hydraulic fracture propagates and interacts with natural fractures. The inner domain is embedded in an outer continuum domain that is implemented to extend the length of the hydraulic fracture and to better approximate the boundary effects. The fracture is identified to propagate initially in the viscosity-dominated regime, and the numerical scheme is calibrated by using the theoretical plane strain hydraulic fracture solution. The simulation results for orthogonal crossing indicate three fundamental crossing scenarios, which occur for various stress ratios and friction coefficients of the natural fracture: (i) no crossing, that is, the hydraulic fracture is arrested by the natural fracture and makes a T-shape intersection; (ii) offset crossing, that is, the hydraulic fracture crosses the natural fracture with an offset; and (iii) direct crossing, that is, the hydraulic fracture directly crosses the natural fracture without diversion. Each crossing scenario is associated with a distinct net pressure history. Additionally, the effects of strength contrast and stiffness contrast of rock materials and intersection angle between the hydraulic fracture and the natural fracture are also investigated. The simulations also illustrate that the level of fracturing complexity increases as the number and extent of the natural fractures increase. As a result, we can conclude that complex hydraulic fracture propagation patterns occur because of complicated crossing behavior during the stimulation of naturally fractured reservoirs. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.