Abstract
The precise control over the drug delivery involved in several vital applications including healthcare is required for achieving a therapeutic effect. For such precise control/manipulation of the drugs, micropumps are used. These micropumps are basically of two types viz. check valve-based and valveless micropumps. The valveless micropumps are preferable due to the congestion-free operation of diffuser/nozzle valves. In this paper, design optimization of a valveless piezo-electric actuation based micropump is carried out using COMSOL Multiphysics 5.0 by coupling two Multiphysics interface modules namely fluid–structure interaction and piezoelectric physics modules. Using simulation studies, the influence of pump design parameters including diffuser angle, diffuser length, neck width, chamber depth, chamber diameter and diaphragm thickness on net flow rate is studied. An optimal set of design parameters for the proposed micropump is identified. Further, the influence of actuation frequency on the flow rate is analysed. It is found that the proposed micropump is capable to deliver a net flow rate of 20 µl/min and a maximum back pressure attainable is 200 Pa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.