Abstract
We present a method for the determination of hydraulic conductivity from monitoring of salt tracer tests by electrical resistivity tomography (ERT). To ensure that the underlying principles of flow, transport, and geoelectrics are obeyed in the inversion, we perform a fully coupled hydrogeophysical analysis using temporal moments of electrical potential perturbations. In the predictive mode, we use moment‐generating equations with corresponding adjoint equations for the evaluation of sensitivities. For inversion, we apply the quasi‐linear geostatistical inversion approach. The method is tested in a synthetic case study mimicking a laboratory‐scale quasi two‐dimensional sandbox, in which 48 electrodes and 8 piezometers are used. The hydraulic conductivity field is estimated from the mean arrival times of electrical potential perturbations and hydraulic heads. The estimated hydraulic conductivity field reproduces most features with, however, a loss of variability. Even though only the temporal moments of the electrical signals are used for inversion, the transient behavior is satisfactorily recovered. Also, the spatial patterns of concentration arrival times in the true and estimated cases are in good agreement, so that the propagation of the tracer plume can be followed fairly accurately. We test the effects of large measurement errors and erroneous prior information on the performance of the inversion. While prior statistical parameters are of minor importance in detecting the major pattern of hydraulic conductivity, a large measurement error could have an important impact on the solution. Also, the choice of electrode configurations appears to be important. In particular, strictly surface‐based geoelectrical surveys do not seem to be very suitable for identifying spatial patterns of hydraulic conductivity by ERT monitoring of salt tracer tests within aquifers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.