Abstract

The goal of this research is to achieve accurate segmentation of liver tumors in noncontrast T2-weighted magnetic resonance imaging. As liver tumors and adjacent organs are represented by pixels of very similar gray intensity, segmentation is challenging, and the presence of different sizes of liver tumor makes segmentation more difficult. Differing from previous work to capture contextual information using multiscale feature fusion with concatenation, attention mechanism is added to our segmentation model to extract precise global contextual information for pixel labeling without requiring complex dilated convolution. This study describe a liver lesion segmentation model derived from FC-DenseNet with attention mechanism. Specifically, a global attention module (GAM) is added to up-sampling path, and high-level features are processed by the GAM to generating weighting information for guiding high resolution detail features recovery. High-level features are very effective for accurate category classification, but relatively weak at pixel classification and predicting restoration of the original resolution, so the fusion of high-level semantic features and low-level detail features can improve segmentation accuracy. A weighted focal loss function is used to solve the problem of lesion area occupying a relatively low proportion of the whole image, and to deal with the disequilibrium of foreground and background in the training liver lesion images. Experimental results show our segmentation model can automatically segment liver tumors from complete MRI images, and the addition of the GAM model can effectively improve liver tumor segmentation. Our algorithms have obvious advantages over other CNN algorithms and traditional manual methods of feature extraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call