Abstract

Shadows commonly exist in high resolution satellite imagery, particularly in urban areas, which is a combined effect of low sun elevation, off-nadir viewing angle, and high-rise buildings. The presence of shadows can negatively affect image processing, including land cover classification, mapping, and object recognition due to the reduction or even total loss of spectral information in shadows. The compensation of spectral information in shadows is thus one of the most important preprocessing steps for the interpretation and exploitation of high resolution satellite imagery in urban areas. In this study, we propose a new approach for global shadow compensation through the utilization of fully constrained linear spectral unmixing. The basic assumption of the proposed method is that the construction of the spectral scatter plot in shadows is analogues to that in non-shadow areas within a two-dimension spectral mixing space. In order to ensure the continuity of land covers, a smooth operator is further used to refine the restored shadow pixels on the edge of non-shadow and shadow areas. The proposed method is validated using the WorldView-2 multispectral imagery collected from downtown Toronto, Ontario, Canada. In comparison with the existing linear-correlation correction method, the proposed method produced the compensated shadows with higher quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.