Abstract

In this paper, we present an application of a Galerkin-Petrov method to the spatially one-dimensional Boltzmann equation. The three-dimensional velocity space is discretised by a spectral method. The space of the test functions is spanned by polynomials, which includes the collision invariants. This automatically insures the exact conservation of mass, momentum and energy. The resulting system of hyperbolic PDEs is solved with a finite volume method. We illustrate our method with two standard tests, namely the Fourier and the Sod shock tube problems. Our results are validated with the help of a stochastic particle method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call