Abstract

Thermo-acoustic instabilities remain problematic in the design of propulsion systems such as gas turbine engines, rocket motors, and ramjets. They arise from the constructive interaction of heat release rate and acoustic pressure oscillations, and can result in increased noise and mechanical fatigue. In the present work, we are concerned with the flame response to the thermodynamic fluctuations that accompany an incident acoustic wave. The objective is to investigate the flame dynamics under engine-relevant conditions using high-fidelity numerical simulations and detailed chemical kinetics. The focus is placed on the combustion of hydrogen and n-heptane, as they are both of practical interest and behave very differently when subjected to acoustic waves. We extract the phase and gain of the unsteady heat release response, which are directly related to the Rayleigh criterion and thus the stability of the system. We highlight the differences between results obtained using the fully compressible Navier-Stokes equations and the low Mach number approximation. The two simulation frameworks agree very well for acoustic wavelengths much larger than the flame thickness. However, they differ significantly at high frequencies. The gain erroneously reaches a plateau under the low Mach number approximation, while it decays to zero using the fully compressible framework. This difference is attributed to the spatial variations in the acoustic pressure, which are not captured by the low Mach number approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.