Abstract
Biodegradable or recyclable transient electronics originated from natural polymers are considered as significant solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Yet, they are mostly struggling from mismatched mechanical features with human tissue and inferior environmental adaptability. In this work, based on the novel covalent-like hydrogen bond engineering, we developed a syrup-modified gelatin/Ag-hydrogel, which is entirely derived from natural or safe constituents and highly stretchable, yet fully biodegrades or recyclable. Meanwhile, strong covalent-like hydrogen bonds endow it with several favorable features of adhesion, rapid self-healing and antifreeze. A series of multi-modal application scenarios are further demonstrated to verify the adaptability of this platform that integrates various attributes. Overall, this work provides the feasibility of modified natural polymers to replace synthetic polymers, and provides a general toolbox for the construction of functional units for “green electronics” and the expansion of application models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.