Abstract

Biobased poly(lactic acid)/lignin (PLA/lignin) composites are limited by poor mechanical properties resulted from poor compatibility and low interfacial adhesion. Herein, we reported a novel approach to improve compatibility and interfacial adhesion of PLA/lignin composites via reactive compatibilization with epoxidized natural rubber (ENR) as a compatibilizer. Interfacial tension calculation indicated that lignin tended to act as interfacial phase between PLA and ENR, but morphology analysis demonstrated lignin was wrapped with a layer of ENR and dispersed in PLA matrix, which was attributed to the interfacial reaction of ENR with both PLA and lignin. The interfacial reaction was confirmed by Fourier transform infrared spectroscopy. The compatibility and interfacial adhesion between PLA and lignin were improved significantly by incorporation and increase in the content of ENR, as evidenced by the reduced interfacial gaps, blurry phase boundaries, and enhanced elastic response. As such, the mechanical properties of PLA/lignin composites were enhanced significantly. The tensile strength and elongation at break of PLA/lignin (W/W, 80/20) were improved by 15 % and 77 %, respectively, with the incorporation of only 1 wt% ENR. We believe this approach to compatibilize PLA/lignin composites is promising because it would not require costly modification of lignin and would not compromise the sustainability of composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.