Abstract

One of the most important information about polyesters is their thermal stability and phase transition temperatures. These characteristics give information about the promising behavior of the polyester during processing. In this work, linear bio-based polyester polyols were prepared with the use of succinic acid and 1.3-propanediol (both with natural origin). As a polycondensation catalyst was used tetraisopropyl orthotitanate (TPT), which different amount was employed. The thermogravimetric analysis allowed to observe high thermal stability and one step of the thermal decomposition. This analysis affirmed also that the catalyst content did not influence the thermal degradation characteristics of the prepared polyols. Nevertheless, it has huge importance in the context of thermal degradation kinetics. It was determined with the use of Ozawa, Flynn, and Wall and Kissinger's methods to verifying catalyst impact on the thermal degradation kinetics. Moreover, probable mechanism of the prepared bio-based polyols thermal degradation was proposed based on the QMS results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.