Abstract

White matter hyperintensity (WMH) is associated with various aging and neurodegenerative diseases. In this paper, we proposed and validated a fully automatic system which integrated classical image processing and deep neural network for segmenting WMH from fluid attenuation inversion recovery (FLAIR) and T1-weighed magnetic resonance (MR) images. A novel skip connection U-net (SC U-net) was proposed and compared with the classical U-net. Experiments were performed on a dataset of 60 images, acquired from three different scanners. Validation analysis and cross-scanner testing were conducted. Compared with U-net, the proposed SC U-net had a faster convergence and higher segmentation accuracy. The software environment and models of the proposed system were made publicly accessible at Dockerhub.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.