Abstract

Atherosclerosis is responsible for a large proportion of cardiovascular diseases (CVD), which are the leading cause of death in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. It causes thickening and the reduction of elasticity in the blood vessels. An early diagnosis of this condition is crucial to prevent patients from suffering more serious pathologies (heart attacks and strokes). The evaluation of the Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) in B-mode ultrasound images is considered the most useful tool for the investigation of preclinical atherosclerosis. Usually, it is manually measured by the radiologists. This paper proposes a fully automatic segmentation technique based on Machine Learning and Statistical Pattern Recognition to measure IMT from ultrasound CCA images. The pixels are classified by means of artificial neural networks to identify the IMT boundaries. Moreover, the concepts of Auto-Encoders (AE) and Deep Learning have been included in the classification strategy. The suggested approach is tested on a set of 55 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.