Abstract

Multiple Sclerosis (MS) is a chronic neurological disease, in which immune-mediated mechanisms lead to pathological processes of neurodegeneration. Optical coherence tomography (OCT) has recently begun to be used to diagnose and monitor patients with MS. Morphological changes in the choroid have been linked to the onset of MS, so an accurate segmentation of this layer is critical. Conventional OCT has several limitations in obtaining accurate images of the choroid, which has been improved through the use of systems such as Enhanced Depth Imaging (EDI) OCT. Unfortunately, many longitudinal studies that have collected samples over the years in the past have been performed using highly variable settings and without the use of the EDI protocol (or similar variants). For these reasons, in this work we propose a series of fully automatic approaches, based on convolutional neural networks, capable of robustly segmenting the choroid in OCT images without using the EDI protocol. To test the robustness and efficiency of our method, we performed experiments on a public dataset and a collected one. The Dice score obtained by the best proposed architecture is 89.7 for the public dataset, and 93.7 for the collected dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.