Abstract

To improve monitoring of cardiac function during major surgery and intensive care, we have developed a method for fully automatic estimation of mitral annular plane systolic excursion (auto-MAPSE) using deep learning in transoesophageal echocardiography (TOE). The aim of this study was a clinical validation of auto-MAPSE in patients with heart disease. TOE recordings were collected from 185 consecutive patients without selection on image quality. Deep-learning-based auto-MAPSE was trained and optimized from 105 patient recordings. We assessed auto-MAPSE feasibility, and agreement and inter-rater reliability with manual reference in 80 patients with and without electrocardiogram (ECG) tracings. Mean processing time for auto-MAPSE was 0.3 s per cardiac cycle/view. Overall feasibility was >90% for manual MAPSE and ECG-enabled auto-MAPSE and 82% for ECG-disabled auto-MAPSE. Feasibility in at least two walls was ≥95% for all methods. Compared with manual reference, bias [95% limits of agreement (LoA)] was -0.5 [-4.0, 3.1] mm for ECG-enabled auto-MAPSE and -0.2 [-4.2, 3.6] mm for ECG-disabled auto-MAPSE. Intra-class correlation coefficient (ICC) for consistency was 0.90 and 0.88, respectively. Manual inter-observer bias [95% LoA] was -0.9 [-4.7, 3.0] mm, and ICC was 0.86. Auto-MAPSE was fast and highly feasible. Inter-rater reliability between auto-MAPSE and manual reference was good. Agreement between auto-MAPSE and manual reference did not differ from manual inter-observer agreement. As the principal advantages of deep-learning-based assessment are speed and reproducibility, auto-MAPSE has the potential to improve real-time monitoring of left ventricular function. This should be investigated in relevant clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.