Abstract

The parameters of muscle ultrasound images reflect the function and state of muscles. They are of great significance to the diagnosis of muscle diseases. Because manual labeling is time-consuming and laborious, the automatic labeling of muscle ultrasound image parameters has become a research topic. In recent years, there have been many methods that apply image processing and deep learning to automatically analyze muscle ultrasound images. However, these methods have limitations, such as being non-automatic, not applicable to images with complex noise, and only being able to measure a single parameter. This paper proposes a fully automatic muscle ultrasound image analysis method based on image segmentation to solve these problems. This method is based on the Deep Residual Shrinkage U-Net(RS-Unet) to accurately segment ultrasound images. Compared with the existing methods, the accuracy of our method shows a great improvement. The mean differences of pennation angle, fascicle length and muscle thickness are about 0.09°, 0.4 mm and 0.63 mm, respectively. Experimental results show that the proposed method realizes the accurate measurement of muscle parameters and exhibits stability and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.