Abstract
To propose an automated approach for detecting and classifying Intracranial Hemorrhages (ICH) directly from sinograms using a deep learning framework. This method is proposed to overcome the limitations of the conventional diagnosis by eliminating the time-consuming reconstruction step and minimizing the potential noise and artifacts that can occur during the Computed Tomography (CT) reconstructionprocess. This study proposes a two-stage automated approach for detecting and classifying ICH from sinograms using a deep learning framework. The first stage of the framework is Intensity Transformed Sinogram Sythesizer, which synthesizes sinograms that are equivalent to the intensity-transformed CT images. The second stage comprises of a cascaded Convolutional Neural Network-Recurrent Neural Network (CNN-RNN) model that detects and classifies hemorrhages from the synthesized sinograms. The CNN module extracts high-level features from each input sinogram, while the RNN module provides spatial correlation of the neighborhood regions in the sinograms. The proposed method was evaluated on a publicly available RSNA dataset consisting of a large sample size of 8652patients. The results showed that the proposed method had a notable improvement as high as 27% in patient-wise accuracies when compared to state-of-the-art methods like ResNext-101, Inception-v3 and Vision Transformer. Furthermore, the sinogram-based approach was found to be more robust to noise and offset errors in comparison to CT image-based approaches. The proposed model was also subjected to a multi-label classification analysis to determine the hemorrhage type from a given sinogram. The learning patterns of the proposed model were also examined for explainability using the activationmaps. The proposed sinogram-based approach can provide an accurate and efficient diagnosis of ICH without the need for the time-consuming reconstruction step and can potentially overcome the limitations of CT image-based approaches. The results show promising outcomes for the use of sinogram-based approaches in detecting hemorrhages, and further research can explore the potential of this approach in clinicalsettings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.