Abstract

Objective Deep vein thrombosis (DVT) is a disease caused by abnormal blood clots in deep veins. Accurate segmentation of DVT is important to facilitate the diagnosis and treatment. In the current study, we proposed a fully automatic method of DVT delineation based on deep learning (DL) and contrast enhanced magnetic resonance imaging (CE-MRI) images. Methods 58 patients (25 males; 28~96 years old) with newly diagnosed lower extremity DVT were recruited. CE-MRI was acquired on a 1.5 T system. The ground truth (GT) of DVT lesions was manually contoured. A DL network with an encoder-decoder architecture was designed for DVT segmentation. 8-Fold cross-validation strategy was applied for training and testing. Dice similarity coefficient (DSC) was adopted to evaluate the network's performance. Results It took about 1.5s for our CNN model to perform the segmentation task in a slice of MRI image. The mean DSC of 58 patients was 0.74± 0.17 and the median DSC was 0.79. Compared with other DL models, our CNN model achieved better performance in DVT segmentation (0.74± 0.17 versus 0.66±0.15, 0.55±0.20, and 0.57±0.22). Conclusion Our proposed DL method was effective and fast for fully automatic segmentation of lower extremity DVT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.