Abstract

Owing to histologic complexities of brain tumors, its diagnosis requires the use of multimodalities to obtain valuable structural information so that brain tumor subregions can be properly delineated. In current clinical workflow, physicians typically perform slice-by-slice delineation of brain tumor subregions, which is a time-consuming process and also more susceptible to intra- and inter-rater variabilities possibly leading to misclassification. To deal with this issue, this study aims to develop an automatic segmentation of brain tumor in MR images using deep learning. In this study, we develop a context deep-supervised U-Net to segment brain tumor subregions. A context block which aggregates multiscale contextual information for dense segmentation was proposed. This approach enlarges the effective receptive field of convolutional neural networks, which, in turn, improves the segmentation accuracy of brain tumor subregions. We performed the fivefold cross-validation on the Brain Tumor Segmentation Challenge (BraTS) 2020 training dataset. The BraTS 2020 testing datasets were obtained via BraTS online website as a hold-out test. For BraTS, the evaluation system divides the tumor into three regions: whole tumor (WT), tumor core (TC), and enhancing tumor (ET). The performance of our proposed method was compared against two state-of-the-arts CNN networks in terms of segmentation accuracy via Dice similarity coefficient (DSC) and Hausdorff distance (HD). The tumor volumes generated by our proposed method were compared with manually contoured volumes via Bland-Altman plots and Pearson analysis. The proposed method achieved the segmentation results with a DSC of 0.923±0.047, 0.893±0.176, and 0.846±0.165 and a 95% HD95 of 3.946±7.041, 3.981±6.670, and 10.128±51.136mm on WT, TC, and ET, respectively. Experimental results demonstrate that our method achieved comparable to significantly (p<0.05) better segmentation accuracies than other two state-of-the-arts CNN networks. Pearson correlation analysis showed a high positive correlation between the tumor volumes generated by proposed method and manual contour. Overall qualitative and quantitative results of this work demonstrate the potential of translating proposed technique into clinical practice for segmenting brain tumor subregions, and further facilitate brain tumor radiotherapy workflow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.