Abstract
Road quality assessment is a crucial part in municipalities' work to maintain their infrastructure, plan upgrades, and manage their budgets. Properly maintaining this infrastructure relies heavily on consistently monitoring its condition and deterioration over time. This can be a challenge, especially in larger towns and cities where there is a lot of city property to keep an eye on. We review road quality assessment methods currently employed, and then describe our novel system, which integrates a collection of existing algorithms, aimed at identifying distressed road regions from street view images and pinpointing cracks within them. We predict distressed regions by computing Fisher vectors on local SIFT descriptors and classifying them with an SVM trained to distinguish between road qualities. We follow this step with a comparison to a weighed contour map within these distressed regions to identify exact crack and defect locations, and use the contour weights to predict the crack severity. Promising results are obtained on our manually annotated dataset, which indicate the viability of using this cost-effective system to perform road quality assessment at the municipal level.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.