Abstract
Fully standardized reproducible and sensitive quantification assays for cytomegalovirus (CMV) are needed to better define thresholds for antiviral therapy initiation and interruption. We evaluated the newly released Abbott RealTime CMV assay for CMV quantification in whole blood (WB) that includes automated extraction and amplification (m2000 RealTime system). Sensitivity, accuracy, linearity, and intra- and interassay variability were validated in a WB matrix using Quality Control for Molecular Diagnostics (QCMD) panels and the WHO international standard (IS). The intra- and interassay coefficients of variation were 1.37% and 2.09% at 5 log10 copies/ml and 2.41% and 3.80% at 3 log10 copies/ml, respectively. According to expected values for the QCMD and Abbott RealTime CMV methods, the lower limits of quantification were 104 and <50 copies/ml, respectively. The conversion factor between international units and copies (2.18), determined from serial dilutions of the WHO IS in WB, was significantly different from the factor provided by the manufacturer (1.56) (P = 0.001). Results from 302 clinical samples were compared with those from the Qiagen artus CMV assay on the same m2000 RealTime system. The two assays provided highly concordant results (concordance correlation coefficient, 0.92), but the Abbott RealTime CMV assay detected and quantified, respectively, 20.6% and 47.8% more samples than the Qiagen/artus CMV assay. The sensitivity and reproducibility of the results, along with the automation, fulfilled the quality requirements for implementation of the Abbott RealTime CMV assay in clinical settings. Our results highlight the need for careful validation of conversion factors provided by the manufacturers for the WHO IS in WB to allow future comparison of results obtained with different assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.