Abstract

Purpose: Use deep learning (DL) to automate the measurement and tracking of kidney stone burden over serial CT scans. Materials and Methods: This retrospective study included 259 scans from 113 symptomatic patients being treated for urolithiasis at a single medical center between 2006 and 2019. These patients underwent a standard low-dose noncontrast CT scan followed by ultra-low-dose CT scans limited to the level of the kidneys. A DL model was used to detect, segment, and measure the volume of all stones in both initial and follow-up scans. The stone burden was characterized by the total volume of all stones in a scan (SV). The absolute and relative change of SV, (SVA and SVR, respectively) over serial scans were computed. The automated assessments were compared with manual assessments using concordance correlation coefficient (CCC), and their agreement was visualized using Bland-Altman and scatter plots. Results: Two hundred twenty-eight out of 233 scans with stones were identified by the automated pipeline; per-scan sensitivity was 97.8% (95% confidence interval [CI]: 96.0-99.7). The per-scan positive predictive value was 96.6% (95% CI: 94.4-98.8). The median SV, SVA, and SVR were 476.5 mm3, -10 mm3, and 0.89, respectively. After removing outliers outside the 5th and 95th percentiles, the CCC measuring agreement on SV, SVA, and SVR were 0.995 (0.992-0.996), 0.980 (0.972-0.986), and 0.915 (0.881-0.939), respectively Conclusions: The automated DL-based measurements showed good agreement with the manual assessments of the stone burden and its interval change on serial CT scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.