Abstract
Accurate segmentation of the breast from digital mammograms is an important pre-processing step for computerized breast cancer detection. In this study, we propose a fully automated segmentation method. Noise on the acquired mammogram is reduced by median filtering; multidirectional scanning is then applied to the resultant image using a moving window 15×1 in size. The border pixels are detected using the intensity value and maximum gradient value of the window. The breast boundary is identified from the detected pixels filtered using an averaging filter. The segmentation accuracy on a dataset of 84 mammograms from the MIAS database is 99%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.