Abstract

The Alzheimer's disease (AD) population increases worldwide, placing a heavy burden on the economy and society. Presently, there is no cure for AD. Developing a convenient method of screening for AD and mild cognitive impairment (MCI) could enable early intervention, thus slowing down the progress of the disease and enabling better overall disease management. In the current study, resting-state electroencephalography (EEG) data were acquired from 113 normal cognition (NC) subjects, 116 amnestic MCI patients, and 72 probable AD patients. After preprocessing by an automatic algorithm, features including spectral power, complexity, and functional connectivity were extracted, and machine-learning classifiers were built to differentiate among the 3 groups. The classification performance was evaluated from multiple perspectives, including accuracy, specificity, sensitivity, area under the curve (AUC) with 95% confidence intervals, and compared to the empirical chance level by permutation tests. The analysis of variance results (P<0.05 with false discovery rate correction) confirmed the tendency to slow brain activity, reduced complexity, and connectivity with AD progress. By combining the features, the ability of the machine-learning classifiers, especially the ensemble trees, to differentiate among the 3 groups, was significantly better than that of the empirical chance level of the permutation test. The AUC of the classifier with the best performance was 80.08% for AD vs. NC, 70.82% for AD vs. MCI, and 63.95% for MCI vs. NC. The current study presented a fully automatic procedure that could significantly distinguish NC, MCI, and AD subjects via resting-state EEG signals. The study was based on a large data set with evidence-based medical diagnosis and provided further evidence that resting-state EEG data could assist in the discrimination of AD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call