Abstract
The purpose of this study is the classification of high angular resolution diffusion imaging (HARDI) in vivo data using a model-free approach. This is achieved by using a Support Vector Machine (SVM) algorithm taken from the field of supervised statistical learning. Six classes of image components are determined: grey matter, parallel neuronal fibre bundles in white matter, crossing neuronal fibre bundles in white matter, partial volume between white and grey matter, background noise and cerebrospinal fluid. The SVM requires properties derived from the data as input, the so called feature vector, which should be rotation invariant. For our application we derive such a description from the spherical harmonic decomposition of the HARDI signal. With this information the SVM is trained in order to find the function for separating the classes. The SVM is systematically tested with simulated data and then applied to six in vivo data sets. This new approach is data-driven and enables fully automatic HARDI data segmentation without employing a T1 MPRAGE scan and subjective expert intervention. This was demonstrated on five test in vivo data sets giving robust results. The segmentation results could be used as a priori knowledge for increasing the performance of fibre tracking as well as for other clinical and diagnostic applications of diffusion weighted imaging (DWI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.