Abstract
A fully automated high-throughput liquid-liquid extraction (LLE) methodology has been developed for preparation of biological samples using a 96-well LLE plate and a 96-channel robotic liquid handling workstation. The 96-well LLE plate is made of a 96-well filter plate filled with inert diatomaceous earth particles, allowing continuous and efficient extraction of analytes between the aqueous biological sample and the organic extraction solvent. Two carboxylic acid-based protease inhibitor compounds with high and low levels of plasma protein binding were chosen for the development and application of the automated methodology. The LLE extracts of the plasma samples of the two compounds were analyzed by high-performance liquid chromatography with electrospray (ESI) tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method was developed using a rapid gradient LC separation, followed by sample introduction through an ionspray interface in the negative ion mode and tandem mass spectrometric detection with selected reaction monitoring. In the optimized LLE method, a formate buffer solution was first loaded into a 96-well filter plate packed with inert diatomaceous earth material. Then crude plasma samples and a water-immiscible organic solvent, methyl ethyl ketone, were sequentially added to the LLE plate so that LLE would occur in the interface between the two liquid phases on the surface of individual particles in each well. The organic eluate containing extracted analytes was evaporated and reconstituted for LC-MS/MS analysis. This fully automated LLE methodology avoids several disjointed steps involved in a manual or semiautomated LLE method, leading to significantly reduced sample preparation time, increased sample throughput, and clean sample extracts for improved ESI-MS/MS detection. The automated LLE methodology is universal and can be employed for sample preparation of other biological fluids. The complete bioanalytical method, based on the automated LLE and fast gradient LC-MS/MS, was validated and successfully applied to the quantitative analysis of protease inhibitors in rat plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.