Abstract
We calculate target-material responses for dark matter–electron scattering at the all-electron level using atom-centered Gaussian basis sets. The all-electron effects enhance the material response at high momentum transfers from dark matter to electrons, q≳O(10αme), compared to calculations using conventional plane wave methods, including those used in ; this enhances the expected event rates at energy transfers E≳10 eV, especially when scattering through heavy mediators. We carefully test a range of systematic uncertainties in the theory calculation, including those arising from the choice of basis set, exchange-correlation functional, number of unit cells in the Bloch sum, k-mesh, and neglect of scatters with very high momentum transfers. We provide state-of-the-art crystal form factors, focusing on silicon and germanium. Our code and results are made publicly available as a new tool, called (“”). Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.