Abstract
A novel dual-length microneedle radiofrequency (DLMR) device has been developed to achieve full-thickness skin rejuvenation by stimulating the papillary and reticular dermis simultaneously. This device's dual-level targeting concept need to be validated on human skin, although its clinical efficacy has been demonstrated in a previous study. This study evaluated the dual-depth targeting capability and the ability to induce rejuvenation in each layer of vertical skin anatomy, that is, the epidermis, papillary dermis, and reticular dermis, using full-thickness human facial skin samples. Human facial skin samples were obtained from 13 Asian patients who had facelift surgery. To validate the dual-depth targeting concept, DMLR-treated skin samples were analyzed using a digital microscope, thermal imaging, and hematoloxylin and eosin (H&E) staining immediately after DLMR application. On samples stained with H&E, Masson's tricrome, and Verhoeff-Van Gieson, histological observation and morphometric analysis were performed. Total collagen assay (TCA) and quantitative real-time polymerase chain reaction (qPCR) were used to assess changes in total collagen content and mRNA expression levels of collagen types I/III and vimentin, respectively. The DLMR device successfully induced thermal stimulation in the papillary and reticular dermis. The thickness, stacks, and dermal-epidermal junction convolution of the epidermis treated with DLMR were significantly increased. Collagen bundles in the dermis treated with DLMR exhibited a notable increase in thickness, density, and horizontal alignment. Dermal collagen levels were significantly higher in the morphometric and TCA data, as well as in the qPCR data for dermal matrix proteins. Our DLMR device independently and precisely targeted the papillary and reticular dermis, and it appears to be an effective modality for implementing full-thickness rejuvenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.