Abstract
In the paper, the stable full-state tracking problem is investigated for nonholonomic wheeled mobile robots under output-tracking control laws. Dynamics of such wheeled mobile robots are nonholonomic and pose challenging problems for control design and stability analysis. The dynamics formulated in terms of full-state tracking errors offer some properties that allow better understanding of the internal and zero dynamics of the tracking-error system and more insights to the trajectory tracking stability. Output functions are chosen as virtual reference points for various types of wheeled mobile robots in aid of output controller designs. Sufficient conditions are derived to ensure the stable full-state trajectory tracking under output-tracking control laws. A type (1,1) mobile robot of car-like configuration is studied in detail and further numerical analysis provides more results which are beyond the reach of analytical means. An example and simulation results are presented to confirm the theory and observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.