Abstract

The k-distribution method applied in narrow band and wide band is extended to the full spectrum based on spectroscopic datebase HITEMP, educing the full-spectrum k-distribution model. Absorption coefficents in this model are reordered into a smooth,monotonically increasing function such that the intensity calculations are performed only once for each absorption coefficent value and the resulting computations are immensely more efficent.Accuracy of this model is examined for cases ranging from homogeneous one-dimensional carbon dioxide to inhomogeneous ones with simultaneous variations in temperature. Comparision with line-by-line calculations (LBL) and narrow-band k-distribution (NBK) method as well as wide-band k-distribution (WBK) method shows that the full-spectrum k-distribution model is exact for homogeneous media, although the errors are greater than the other two models. After dividing the absorption coefficients into several groups according to their temperature dependence, the full-spectrum k-distribution model achieves line-by-line accuracy for gases inhomogeneous in temperature, accompanied by lower computational expense as compared to NBK model or WBK model. It is worth noting that a new grouping scheme is provided in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call