Abstract

The authors have studied the atomic structure of the clean W(110) surface by means of site-resolved scanned-angle W4f{sub 7/2} photoelectron diffraction (PD) data obtained over nearly the full 2{pi} solid angle above the surface. Prior to the availability of high-brightness sources such as the Advanced Light Source, such large high-resolution data sets were prohibitively time consuming to obtain. The well characterized W(110) system was used as a reference case to check the accuracy of structure determinations from such scanned-angle data via R-factor comparisons of experiment with theoretical multiple scattering calculations. The photoelectron kinetic energy of {approximately}40 eV used was also lower than in many prior PD studies, providing further challenges to theory. The influence of various non-structural theoretical input parameters (e.g., scattering phase shifts, electron inelastic attenuation length, and inner potential) was thus also assessed. A final optimized structure is presented, together with comments on the future applications of this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call