Abstract

BackgroundFull-root aortic valve replacement with stentless xenografts has potentially superior hemodynamic performance compared to stented valves. However, a number of cardiac surgeons are reluctant to transform a classical stented aortic valve replacement into a technically more demanding full-root stentless aortic valve replacement. Here we describe our technique of full-root stentless aortic xenograft implantation and compare the early clinical and midterm hemodynamic outcomes to those after aortic valve replacement with stented valves.MethodsWe retrospectively compared the pre-operative characteristics of 180 consecutive patients who underwent full-root replacement with stentless aortic xenografts with those of 80 patients undergoing aortic valve replacement with stented valves. In subgroups presenting with aortic stenosis, we further analyzed the intra-operative data, early postoperative outcomes and mid-term regression of left ventricular mass index.ResultsPatients in the stentless group were younger (62.6 ± 13 vs. 70.3 ± 11.8 years, p < 0.0001) but had a higher Euroscore (9.14 ± 3.39 vs.6.83 ± 2.54, p < 0.0001) than those in the stented group. In the subgroups operated for aortic stenosis, the ischemic (84.3 ± 9.8 vs. 62.3 ± 9.4 min, p < 0.0001) and operative times (246.3 ± 53.6 vs. 191.7 ± 53.2 min, p < 0.0001) were longer for stentless versus stented valve implantation. Nevertheless, early mortality (0% vs. 3%, p < 0.25), re-exploration for bleeding (0% vs. 3%, p < 0.25) and stroke (1.8% vs. 3%, p < 0.77) did not differ between stentless and stented groups. One year after the operation, the mean transvalvular gradient was lower in the stentless versus stented group (5.8 ± 2.9 vs. 13.9 ± 5.3 mmHg, p < 0.0001), associated with a significant regression of the left ventricular mass index in the stentless (p < 0.0001) but not in the stented group (p = 0.2).ConclusionOur data support that full-root stentless aortic valve replacement can be performed without adversely affecting the early morbidity or mortality in patients operated on for aortic valve stenosis provided that the coronary ostia are not heavily calcified. The additional time necessary for the full-root stentless compared to the classical stented aortic valve replacement is therefore not detrimental to the early clinical outcomes and is largely rewarded in patients with aortic stenosis by lower transvalvular gradients at mid-term and a better regression of their left ventricular mass index.

Highlights

  • Full-root aortic valve replacement with stentless xenografts has potentially superior hemodynamic performance compared to stented valves

  • Full-root replacement technique has potentially superior hemodynamic performance compared to subcoronary implantation of stented or stentless aortic valve substitutes, since i) it offers the possibility to implant a 3–4 mm larger valve in a given patient, allowing significant reduction in transvalvular gradients resulting in a better regression of left ventricular hypertrophy, ii) the preservation of the sinuses of the porcine aortic root maintains an optimal coronary perfusion, promoting further improvement in patient outcomes, iii) these performances apply to younger patients

  • Isolated aortic valve replacement was performed in 47% of the patients in the stentless and in 45% of the patients in the stented group (Table 1)

Read more

Summary

Introduction

Full-root aortic valve replacement with stentless xenografts has potentially superior hemodynamic performance compared to stented valves. We describe our technique of full-root stentless aortic xenograft implantation and compare the early clinical and midterm hemodynamic outcomes to those after aortic valve replacement with stented valves. Full-root replacement technique has potentially superior hemodynamic performance compared to subcoronary implantation of stented or stentless aortic valve substitutes, since i) it offers the possibility to implant a 3–4 mm larger valve in a given patient, allowing significant reduction in transvalvular gradients resulting in a better regression of left ventricular hypertrophy, ii) the preservation of the sinuses of the porcine aortic root maintains an optimal coronary perfusion, promoting further improvement in patient outcomes, iii) these performances apply to younger patients

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call