Abstract

We have developed a three-dimensional, self-consistent full-quantum transport simulator for nanowire field effect transistors based on the eight-band k⋅p method. We have constructed the mode-space Hamiltonian via a unitary transformation from the Hamiltonian discretized in the k-space, and reduced its size significantly by selecting only the modes that contribute to the transport. We have also devised an approximate but highly accurate method to solve the cross-sectional eigenvalue problems, thereby overcoming the numerical bottleneck of the mode-space approach. We have therefore been able to develop a highly efficient device simulator. We demonstrate the capability of our simulator by calculating the hole transport in a p-type Si nanowire field effect transistor and the band-to-band tunneling current in a InAs nanowire tunnel field effect transistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.