Abstract

BackgroundR2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line.ResultsThe evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms.ConclusionsThis work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.

Highlights

  • R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation

  • Phylogenetic relationships, and expression patterns of ClMYB encoding genes were subsequently investigated. Based on their evolutionary relationship with the known genes from Arabidopsis thaliana and woody species, we identified nine ClMYBs associated with secondary cell wall development with some degree of diversification of tissue specificity compared to the angiosperm species

  • After the removal of redundant sequences, we identified 52 R2R3-MYB with complete open reading frame (ORF), which were sequentially named as ClMYB1–52 (Supplementary Table S2)

Read more

Summary

Introduction

R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. The radial growth of woody stem in gymnosperm and angiosperm is contributed by bifacial development of cambium cells that forms xylem and phloem to the inner and outer part of vascular bundles, respectively [1]. Even though the xylems subsequently differentiate into vessels and fibres in angiosperms, gymnosperms form a primitive lineage having tracheids in woody tissues for water conductance and mechanical support. In a matured xylem cell, the secondary cell wall forms the thickest layer that determines wood properties. Cell wall formation is spatiotemporally controlled by a hierarchical regulatory network. Transcription factors containing NAC (NAM/ATAF/CUC) [3,4,5] and MYB domains [6, 7] are essential for the transcriptional control of wood formation

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.