Abstract

Abstract This study proposes a novel general-purpose 3D continuously scanning laser Doppler vibrometer (CSLDV) system to measure 3D full-field vibration of a structure with a curved surface in a non-contact and fast way. The proposed 3D CSLDV system consists of three CSLDVs, a profile scanner, and an external controller, and is experimentally validated by measuring 3D full-field vibration of a turbine blade with a curved surface under sinusoidal excitation and identifying its operating deflection shapes (ODSs). A 3D zig-zag scan path is proposed for scanning the curved surface of the blade based on results from the profile scanner, and 6scan angles of mirrors in CSLDVs are adjusted based on relations among their laser beams to focus three laser spots at one location, and direct them to continuously and synchronously scan the proposed 3D scan path. A signal processing method that is referred to as the demodulation method is used to identify 3D ODSs of the blade. The first six ODSs from 3D CSLDV measurement have good agreement with those from a commercial 3D SLDV system with modal assurance criterion values larger than 95%. In the experiment, it took the 3D SLDV system about 900 seconds to scan 85 measurement points, and the 3D CSLDV system 115.5 seconds to scan 132,000 points, indicating that the 3D CSLDV system proposed in this study is much more efficient than the 3D SLDV system for measuring 3D full-field vibration of a structure with a curved surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call