Abstract

We present an optical tweezer technique assisted full-field optical coherence tomography (FF-OCT) system. The proposed scheme enables ultrahigh-resolution OCT imaging of a floating object optically trapped by single-beam gradient force in medium. The set up consists of a Linnik type of white light interference microscope combined with an optical tweezer system. The optical trap is formed by tightly focusing a 1064 nm Q-switching pulsed laser beam with a microscope objective lens of high numerical aperture (1.0 NA) in sample arm of the OCT interferometer. This co-sharing of probe channel between two of systems enables concurrent actions of trapping and OCT imaging for the sample. OCT imaging of the sample in depth can achieve by positioning the coherence gating with displacement of reference arm in the OCT interferometer. To demonstrate the efficacy of the system, micron-sized dielectric particles and living cells in solution are simultaneously trapped and optically sliced with cellular resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call