Abstract

The principal strains at the microscale are the key parameters for evaluating the instability behaviors of materials. In this study, we developed a technique to acquire the full-field distributions of the principal strains and their orientations by integrating the scanning moire method and the theoretical analysis of strain status. The normal strains in two perpendicular directions were first measured using the SEM scanning moire fringes. The principal strains with orientations were then determined based on the analysis of strain status for plane stress problems. In this study, the maximum and the minimum principal strains and their orientations of carbon fiber reinforced plastics under a three-point bending test were measured. The maximum principal strain is greatest in the bottom-left region and the absolute value of the minimum principal strain is greatest in the upper-right region of this specimen. This technique is independent of the specimen grating direction and is useful to detect the potential failure characteristics of various composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.